DEVELOPMENT OF FERTILITY RESTORERS OF WINTER OILSEED RAPE WITH LOW GLUCOSINOLATE CONTENT FOR THE CMS OGU-INRA SYSTEM

Ivana Macháčková,1 Radoslav Koprna2 & Vratislav Kučera3
1Breeding Station Chlumec nad Cidlinou, Selgen, a.s., Chlumec nad Cidlinou, CzechRepublic
2Research Institute for Cattle Breeding, Ltd., Vikýřovice, Czech Republic
3Crop Research Institute Prague-Ruzyně, Czech Republic

Abstract
We have bred low glucosinolate (GSL) winter oilseed rape lines carrying the fertility restorer for the CMS Ogu-INRA system. The original restorer line BO20 contained 31 μmol.g⁻¹ GSL in seeds, but by crossing this line with various low GSL CMS lines, followed by repeated selection of fertile segregates, we were able to obtain fertile lines with a mean GSL content in seeds of 11.8 μmol/g. This result confirmed that the gene(s) controlling the GSL content are not closely linked to the fertility restorer gene.

Keywords: CMS Ogu-INRA; fertility restorer lines; glucosinolates; winter oilseed rape

Introduction
In the Ogu-INRA CMS system, the male sterile parent is homozygous recessive for the fertility restorer gene (rfrf) and contains a male-sterile cytoplasm (S), while the restorer line is genetically RfRf. The fertility restorer gene Rfo was introgressed into oilseed rape from radish (Raphanus sativus). It is assumed that genes controlling seed glucosinolate (GSL) content are closely linked to Rfo (PELLAN-DELOURME & RENARD 1988; RENARD et al. 1997; DELOURME et al. 1998). In particular, this linkage has hampered the exploitation of this CMS system for the creation of double zero hybrids (DELOURME et al. 1995, 1998). However, it has been shown, that double-zero fertility restorers can be obtained by conventional breeding methods (DELOURME et al. 1999; PRUVOT et al. 1999). Here, we describe our progress in creating double zero GSL fertility restorer lines appropriate for use in the CMS Ogu-INRA system by means of a single cross with a low GSL donor, followed by pedigree selection.

Materials and Methods

Plant materials
The original Rfrf fertility restorer line B020 was obtained from INRA (France). Its seed GSL content of > 31 μmol/g (measured at 9% moisture content) exceeds the limit of 18 μmol/g required by the Czech Variety Office for “low glucosinolate” cultivars. Therefore, it was crossed with 13 low GSL CMS lines to obtain populations varying in seed GSL content. The mean seed GSL content of the donors was 13.2 μmol/g. The male sterile line A115 ((S)rfrf) was used as the test-cross parent to perform a fertility restoration test (FRT) in the F1 generation.

Selection of fertility restorer lines for low GSL content
Restorer lines were planted and evaluated in 2.5 m² plots. Fertile selections were isolated from external pollen by covering them with a polypropylene isolation bag. Seed GSL content was assessed by HPLC (High Pressure Liquid Chromatography) using the instrument SP 8100 XR Spectra – Physics, USA.

The glucotest method was used for estimating GSL content in the first year of experiments. This method is based on enzymatic decomposition of GSL in crushed seeds to glucose, which is then semi-quantitatively measured, using reagent paper strips.

Selection of low GSL fertility restorer lines by the fertility restoration test
To distinguish between RfRf homozygotes and Rfrf heterozygotes, we used a fertility restoration test (FRT) as follows:
The CMS line A115 was pollinated under isolation by the tested restorer line. Seeds of the obtained F1 hybrids were sown in 5-row microplots. Restorer lines, whose hybrids consisted of 100 % fertile plants, were considered RfRf homozygous, while those producing about 50% fertile hybrids were considered Rfrf heterozygous.

Heterozygous restorer lines meeting the 18 μmol/g limit were accepted in the first two years, while in the third year only RfRf homozygous lines meeting the limit were accepted.

Statistical evaluation of experimental results
The STATISTICA package (StatSoft, Inc., Tulsa, USA) was used for all statistical analyses. The selection differential (S) for GSL content was defined as the difference between the parental generation mean and selected progeny mean, and the response to selection by the difference between parental and next generation means. The intensity of selection (IS) for GSL content was given by S/\(\sigma_p \), where \(\sigma_p \) was the standard deviation (SD) of the progeny population.

RESULTS AND DISCUSSION
The B020 (Rfrf) × CMS line (rfrf) F_{1} generation segregated as Rfrf (male fertile) and rfrf (sterile). From the 95 fertile plants selected in 2000 (Table 1) 55 low GSL plants were selected using the glucotest method. In 2001, the stronger limit of 13 \(\mu \)mol/g GSL was applied and 38 fertile plants out of 178 were selected. In the following generation 22 selections were obtained with a mean GSL content of 12.4 \(\mu \)mol/g. Because of this large reduction in plant numbers, selection was relaxed, accepting 15 \(\mu \)mol GSL/g in the following year. From 96 fertile plants analysed in 2003, 65 were selected (IS = 0.55). The mean seed GSL content of this population had increased to 16.1 \(\mu \)mol/g, but this is still well below the officially required limit of 18 \(\mu \)mol/g. Variation in GSL content during the course of selection has been noted also by RUCKER and RÖBBELEN (1994), who ascribed low GSL content to the additive action of four or five recessive genes. Some of the variation from year to year can also be caused by climatic influence (FELDE et al. 2006).

Table 1. The number of selected plants, the seed GSL content of their progeny (\(\mu \)mol/g) and the selection criteria imposed within each growing season

<table>
<thead>
<tr>
<th>Year of harvest</th>
<th>No. of isolated plants/lines</th>
<th>GSL content in the population under selection</th>
<th>No. of selected plants</th>
<th>Selection criterion for GSL ((\mu)mol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>95*</td>
<td>–</td>
<td>–</td>
<td>55 (\leq 18)</td>
</tr>
<tr>
<td>2001</td>
<td>178</td>
<td>17.54</td>
<td>3.57</td>
<td>32.17</td>
</tr>
<tr>
<td>2002</td>
<td>39</td>
<td>15.04</td>
<td>5.01</td>
<td>35.45</td>
</tr>
<tr>
<td>2003</td>
<td>96</td>
<td>12.40</td>
<td>4.20</td>
<td>40.40</td>
</tr>
<tr>
<td>2004</td>
<td>78</td>
<td>16.09</td>
<td>3.81</td>
<td>34.97</td>
</tr>
<tr>
<td>2005</td>
<td>72</td>
<td>15.49</td>
<td>5.13</td>
<td>36.54</td>
</tr>
<tr>
<td>2006</td>
<td>84</td>
<td>11.82</td>
<td>0.37</td>
<td>23.52</td>
</tr>
</tbody>
</table>

*Tested by the glucotest method; SD = standard deviation

A set of 28 Rf-lines was selected in the first year of the FRT (IS = 0.21), and 15 of these showed a good level of fertility restoration. Five of the 15 lines produced seed with an acceptable GSL content (Table 2).
Table 2. The occurrence of dominant homozygous restorer lines with acceptable seed GSL content

<table>
<thead>
<tr>
<th>Year of fertility restoring test (FRT)</th>
<th>No. of dominant homozygous restorer lines (Rf/Rf)</th>
<th>No. of dominant restorer lines with acceptable GSL content</th>
<th>Occurrence of lines with acceptable GSL content in the group of dominant homozygous restorers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>5</td>
<td>33.33</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>14</td>
<td>56.00</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>19</td>
<td>90.48</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>38</td>
<td>–</td>
</tr>
</tbody>
</table>

In the second year of the FRT, 33 lines were selected (IS = 0.27), and of the 25 Rf/Rf selections, 14 produced seed with an acceptable content of GSL. In the final year of the FRT, 21 restorer lines were selected, of which 19 produced seed with an acceptable content of GSL (IS = 0.05). Thus, we were able, in agreement with DELOURME et al. (1999), BARTKOWIAK-BRODA and POPLAWSKA (1999) and PRUVOT et al. (1999), through conventional pedigree breeding to generate restorer lines with desirable seed quality. The lack of a correlation between GSL content and fertility restoration is consistent with the report of BARTKOWIAK-BRODA et al. (2003). It can be concluded that it is possible to select oilseed rape Rf/Rf fertility restorer lines with low GSL content, using conventional phenotypic selection.

References

Acknowledgements: The research was supported by the Ministry of Agriculture of the Czech Republic, Project No. Q111A075.