Integrated management systems for canola (Brassica napus L.)

K. Neil Harker1, George W. Clayton2, John T. O’Donovan3, Robert E. Blackshaw2, Stewart Brandt4, Eric N. Johnson4, Lloyd M. Dosdall5, T. Kelly Turkington1, Elwin G. Smith2

1Agriculture and Agri-Food Canada (AAFC), Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta, Canada, T4L 1W1
2AAFC, Lethbridge Research Centre, Box 3000, Lethbridge, Alberta, Canada, T1J 4B1
3AAFC, Beaverlodge Experimental Farm, Box 29, Beaverlodge, Alberta, Canada, T0H 0C0
4AAFC, Scott Experimental Farm, Box 10, Scott, Saskatchewan, Canada, S0K 4A0
5Dept. of Agric., Food and Nutritional Sci., 4-10 Agric./Forestry Cent., Univ. of Alberta, Edmonton, Alberta, Canada, T6G 2P5

Email: HarkerK@AGR.GC.CA

Abstract
Canola is the major oilseed crop in Canada. In recent years, management systems for canola production have rapidly evolved and there are now many options for canola cultivation. Here we summarize western Canadian integrated canola management practices that favor canola health as well as economic and environmental sustainability. Canola establishment is optimized when vigorous, certified, hybrid seed is planted relatively early at a rate that is adequate for healthy populations (at least 70 plants m⁻²). Healthy canola plants in adequate numbers mitigate numerous abiotic (frost, drought, flooding) and biotic (diseases, insects, weeds) threats to optimal canola production. Nitrogen, phosphorous, potassium and a sulphate form of sulphur often improve crop health. Weeds that emerge with the crop should be controlled by the four-leaf stage of the canola. A second in-crop herbicide application is usually not necessary for optimal yields. Disease and insect monitoring are important to determine the necessity of foliar fungicide and insecticide treatments. Using herbicide-resistant (HR) canola cultivars versus non-herbicide-resistant cultivars reduces the need for tillage, improves weed management, protects yield potential, and lowers environmental impact. Compared to other options, economic risks are minimized when glyphosate-resistant canola is planted in late April or early May at 150 seeds m⁻² and treated with a single application of glyphosate before the canola advances beyond the four-leaf stage. Although HR canola volunteers have increased somewhat, widely-publicized concerns over their persistence and management have largely been over-stated. Hybrid cultivars, given their superior competitive ability over open pollinated cultivars, are less dependent on additional herbicide applications than less competitive open pollinated cultivars. Furthermore, the rapid early growth of hybrid cultivars may also improve fertilizer use efficiency and reduce soil and atmospheric nutrient losses compared to open pollinated cultivars.

Key words: Brassica napus, crop health, direct seeding hybrids, integrated crop management, environment

Introduction
Canola is the major oilseed crop in Canada; it is second only to wheat in cropped area and is generally more profitable than wheat. Canola seeded area has increased 55% in the last 10 years (it now occupies 5.5 million ha annually) while wheat area has declined by 20% in the same time period. Continued expansion of canola is likely to continue. The canola crushing industry in Canada will probably require an additional 1.3 million ha of production by 2008. The new Canadian biodiesel market could potentially utilize an additional 2 million ha of canola annually. In addition, Canada is already exporting canola to Europe for their biodiesel market. All of these developments will require canola production in Canada to expand by another 50% in the next decade. It will be a challenge to substantially increase canola production in a sustainable and environmentally sound manner.

Optimal Production Practices
Canola establishment is optimized when vigorous, certified, hybrid seed is planted relatively early at a rate that is adequate for healthy populations of at least 70 plants m⁻². Although much lower stand densities of canola can lead to relatively high yields under some conditions, at lower stand densities yields are much more variable and usually require greater herbicide inputs. Healthy canola plants in adequate numbers buffer and mitigate numerous abiotic (frost, drought, flooding) and biotic (diseases, insects, weeds) challenges. Nitrogen and a sulphate form of sulphur are often crucial to optimal canola production and should be banded near the seed at the time of seeding. Later herbicide applications are usually unnecessary (O’Donovan et al. 2006) and may lead to crop injury (Schilling et al. 2006). Disease and insect monitoring are important to determine the necessity of foliar fungicide and insecticide treatments. To avoid damage to beneficial insects, it is important to ensure that pest insects reach economic threshold levels before insecticides are employed (McMenamin 2006).
In recent years, management systems for canola production have rapidly evolved and there are now many options for canola cultivation. In Canada, more that 90% of canola production involves herbicide-resistant (HR) cultivars. The benefits HR canola production in Canada have substantially outweighed perceived risks (Beckie et al. 2006). Using HR canola cultivars versus non-HR cultivars reduces the need for tillage, improves weed management, protects yield potential, and lowers environmental impact (Canola Council of Canada 2001). Compared to other options, economic risks are minimized when glyphosate-resistant canola is planted in late April or early May (Clayton et al. 2004) at 150 seeds m⁻² and treated with a single application of glyphosate before the canola advances beyond the four-leaf stage (Upadhyay et al. 2005; 2006; Smith et al. 2006).

Hybrid Canola

Farmer adoption of hybrid canola in Canada has increased from 15 to 70% in the last five years. Hybrid cultivars were adopted because of their higher yield potential (30%) but they have the added benefit of being more competitive with weeds (Harker et al. 2003a; Zand & Beckie 2002). Small weed seedlings are particularly vulnerable to the negative effects of shade (Fenner 1978; Mohler 2001). Astute managers are aware of this vulnerability and strive to promote rapid, uniform crop emergence and ground cover to pre-empt light resources potentially available to weeds. Hybrid cultivars can be effective management tools to ensure that crop canopies develop quickly (Harker et al. 2003b). In addition, weed species that require a “light” signal for germination are actually inhibited when red-light depleted radiation is filtered through crop leaves (Górski 1975; King 1975; Silvertown 1980). Given their superior competitive ability over open pollinated cultivars, hybrids are less dependent on additional herbicide applications than less competitive open pollinated cultivars. O’Donovan et al. (2006) demonstrated that glyphosate-resistant canola can increase revenues and decrease herbicide active ingredient entering the environment. Furthermore, the rapid early growth of hybrid cultivars may also improve fertilizer use efficiency and reduce soil and atmospheric nutrient losses compared to open pollinated cultivars.

Volunteer Canola

Some have suggested that volunteer canola, and more specifically volunteer glyphosate-resistant canola, is over-running western Canadian cropland and will soon be our most important weed species in direct-seeding systems. Post-management weed surveys (Leeson et al. 2005), and crop producer experience do not generally support this supposition (Beckie et al. 2006). Careful volunteer canola management in the year after a canola crop helps preclude additional glyphosate-resistant canola management concerns in subsequent years (Harker et al. 2006). Pekrun et al. (1998) showed that volunteer canola is less prone to develop secondary dormancy and persist in soil seedbanks if tillage is delayed for several weeks after harvest or not employed at all. Indeed, zero tillage and direct-seeding systems tend to reduce the persistence of canola volunteers (Harker et al. 2006).

Fig. 1. Mean seed yield responses for the interaction of open-pollinated (Exceed) and hybrid (Invigor 2153) glufosinate-resistant, canola cultivars, time of weed removal (canola growth stages) and seeding rates [seeds m⁻²] averaged across sites at Lacombe (1998–2000) and Lethbridge (1999 and 2000), Alberta, Canada. The error bar represents the LSD₀.05 for the three-way interaction among the factors. Black bars indicate canola yields that are statistically similar to the highest canola yield value. [Adapted from Harker et al. 2003a].
Integrated Crop Management

Beck (2006) reminds us that “successful crop production, regardless of the methods used, is a careful piecing together of numerous components into a system. Simply replacing one component with another is seldom successful.” Focusing on crop health and competitiveness will lead producers to rely on packages of tools which include such things as low-disturbance seeding (maintaining crop residues for moisture conservation and the protection of soil quality), higher seeding rates, optimum fertilizer placement, and diverse crop rotations. High crop competitiveness and higher seeding rates provide a form of biocontrol that reduces herbicide dependence. Poor fertility or damage from improper fertilizer placement can reduce crop health to the degree that all of the tools employed for pest management are negated. Similarly, disease and insect management are also important for weed management because of their impact on crop health and competitiveness.

Harker et al. (2003a) show that HR canola hybrids, when combined with other optimal agronomic practices, enhance opportunities for integrated weed and integrated crop management. Combining the hybrid cultivar with the highest seeding rate, and the earliest time of weed removal led to a 41% yield increase compared with the combination of the weaker cultivar, the lowest seeding rate and the latest time of weed removal. (Fig. 1). The same optimal factor levels also favoured higher levels of weed control and lower weed biomass variability (data not shown here).

It seems almost certain that significantly greater canola production will be required to meet greater market demands in the near- and long-term future. Canola production systems that favour the integration of the above management factors will facilitate crop health as well as economic and environmental sustainability.

References


